
Major Assignment 4

ENGINEER 1D04

Dr. William Farmer and Dr. Spencer Smith

McMaster University, Winter 2012

Revised: June 19, 2013

Please use AutoMarker (automarker.mcmaster.ca) and Avenue to acquire,
test, package and submit your assignment. The procedure for submitting
assignments is summarized on Avenue, with additional details provided by
AutoMarker. Please frequently back up your work by creating a sub-

mission package in AutoMarker. This will provide a chance to recover
your work in the event of an equipment failure.

Background

Let R be the set of real numbers, f : R → R be a continuous function that
maps real numbers to real numbers, and [a, b] be a closed interval of real
numbers (i.e., a set {x ∈ R | a ≤ x ≤ b}). The function f is negative on
the closed interval [a, b] if f(x) < 0 for all x in the closed interval.

Assume the function f is specified by the equation f(x) = sin(x) (where
the input is radians). The purpose of this assignment is to write a Python
program that checks whether this function is negative on a given closed
interval [a, b].
Design, implement, and test a program that satisfies the requirements below.

IMPORTANT!!!: This assignment will be run through an automated
testing program to be graded. Function syntax in your program must be ex-

actly as specified, including spelling, capitalization, and the order of function
parameters. DO NOT include a main function. Failure to precisely follow
the requirements below will result in a significant loss of marks.

Requirements

1. The program contains the definition of a function named fun that im-
plements f .

2. The program contains the definition of a function named
buildInputList that takes floats a and b as input and returns a list
[x0, . . . , x100], where x0 = min(a, b) and x100 = max(a, b), as
output. The xi are evenly spaced from x0 to x100 (i.e., the distance
between xi and xi+1 should be the same for all i with 0 ≤ i ≤ 99).
The members of this list are intended to serve as sample inputs for the
function fun.

1 98D

3. The program contains the definition of a function named
buildOutputList that takes a list [x0, . . . , x100] of floats as input
and returns the list [fun(x0), . . . , fun(x100)] as output.

4. The program contains the definition of a function named
checkProperty that takes floats a and b as input and returns True

as output if the output list shows that f is negative on each sample
point in the interval [min(a, b),max(a, b)] and returns False oth-
erwise.

5. The program requires very little besides the function definitions. There
is no main().

6. The program does not read anything from standard input or write
anything to standard output. That is, the program does not interact
with the user who invokes it.

7. The program is written in Python in a module, NOT in the Python
Shell. To create a new module in IDLE, go to File → New Window.
You must save this file with a .py extension. For more information on
submitting your program, click the ”AutoMarker Instructions” button
above.

8. Your name, MacID, student number, and the date are given in com-
ments at the top of your Python (.py) file before your program.

9. Your answers to the design questions and the test plan (see below) are
given in comments at the bottom of your Python (.py) file after your
program.

10. Your program MUST have valid Python syntax and it must run without
errors. Ensure that your program runs properly by running it before
you submit.

11. You must sign out with a TA or IAI after you have submitted your lab
at the submission station. Failure to do so could result in a zero.

Design Question

How could the buildOutputList function be modified so that it is more
general (and thus more useful)?

Test Plan

Produce a test plan with test cases for each of the functions in your library.

Test: i for function j

Input: inputs for function j

Expected Output: expected output for function j

2 98D

You should have enough test cases to adequately support the argument that
your code is correct. Your test cases should cover as many different classes
of input cases as possible, including boundary cases. Your test plan should
include case(s) where your expected output is a failure.

3 98D

