
Major Assignment 5

ENGINEER 1D04

Dr. William Farmer and Dr. Spencer Smith

McMaster University, Winter 2012

Revised: June 19, 2013

Please use AutoMarker (automarker.mcmaster.ca) and Avenue to acquire,
test, package and submit your assignment. The procedure for submitting
assignments is summarized on Avenue, with additional details provided by
AutoMarker. Please frequently back up your work by creating a sub-

mission package in AutoMarker. This will provide a chance to recover
your work in the event of an equipment failure.

Background

In geometry, a 2-dimensional convex polygon is any closed figure with n > 2
vertices (and n > 2 edges), in which every internal angle is less than 180
degrees and no two edges cross each other. For example, any parallelogram
is a valid convex polygon with n = 4. We can define such a polygon in the
2-D cartesian plane by giving a list of vertex points (x, y pairs), where it is
assumed that the list of vertices travels ”clockwise” around the polygon, as
follows:

v = p0, p1, ..., pn−1 = (x0, y0), (x1, y1), ..., (xn−1, yn−1)

The polygon edges are then defined to be the lines between each pi, pi+1
pair. By definition, xn = x0 and yn = y0, which ”closes” the polygon
with the line pn−1, p0. In Python, we can use this definition to specify a
parallelogram (for example) with the following list of vertices:

v = [ [0.0, 0.0], [0.5, 1.5], [2.5, 1.5], [2.0, 0.0] ]

A polygon defined this way can be easily rotated in place by some angle θ
using a ”rotation matrix.” In 2-D space, the operation is relatively simple
and reduces to the following two operations for each point p in v:

xnew = x · cos (θ) − y · sin (θ), ynew = x · sin (θ) + y · cos (θ)

A polygon can also be shifted by a in the x- direction and b in the y- direction
by applying the following operations for each point p in v:

xnew = x + a, ynew = y + b

Design, implement, and test a program that satisfies the requirements below.

**IMPORTANT!!!**: This assignment will be run through an automated
testing program to be graded. Function syntax in your program must be ex-

actly as specified, including spelling, capitalization, and the order of function
parameters. DO NOT include a main function. Failure to precisely follow
the requirements below will result in a significant loss of marks.

1 43E



Requirements

1. The library includes a Python class named ConvexPolygon.

2. The init method for the class takes the first formal parameter self
and a list of [x, y] pairs v (as in the parallelogram example above),
and stores the list as a class instance variable. Note that the length of
the list is not fixed!

3. The class contains accessors for the vertices v and the number of
vertices n (i.e. the length of v). The names of the accessors are
getVertices and getN, respectively.

4. The class contains a mutator setVertex(self, i, x, y) that takes
the first formal parameter self, an int i, and floats x and y and updates
the i-th vertex in v to be[x, y] (ie. update pi in v). Note that the
length of v does not change!

5. The class contains a mutator rotate(self, theta) that takes the
formal parameter self and a float theta in radians and rotates each
vertex in v using the rotation operation given above.

6. The class contains a method shift(self, x, y) that takes the first
formal parameter self and floats x and y and returns a new ConvexPolygon

object that represents the shifting of the ConvexPolygon object repre-
sented by self in the x and y direction by x and y units respectively.
The shift operation is given above.

7. The program requires very little besides the function definitions. There
is no main().

8. The program does not read anything from standard input or write
anything to standard output. That is, the program does not interact
with the user who invokes it.

9. The program is written in Python in a module, NOT in the Python
Shell. To create a new module in IDLE, go to File → New Window.
You must save this file with a .py extension. For more information on
submitting your program, click the ”AutoMarker Instructions” button
above.

10. Your name, MacID, student number, and the date are given in com-
ments at the top of your Python (.py) file before your program.

11. Your answers to the design questions and the test plan (see below) are
given in comments at the bottom of your Python (.py) file after your
program.

12. Your program MUST have valid Python syntax and it must run without
errors. Ensure that your program runs properly by running it before
you submit.

2 43E



13. You must sign out with a TA or IAI after you have submitted your lab
at the submission station. Failure to do so could result in a zero.

Design and Implementation Instructions

1. Use the math library to implement the sin and cos functions.

2. You may assume that inputs will be within a valid range and of the
correct type, and that exception handling is not necessary.

3. Follow the function syntax EXACTLY as given, including spelling,
capitalization and the order of function parameters.

Design Question

The calculation of xnew depends on the original value of y, and the calcu-
lation of ynew depends on the original value of x. How will your program
ensure that the correct calculation is performed for both values?

Test Plan

Produce a test plan with test cases for each of the methods/functions defined
above using the following form:

Test: i for function j

Input: inputs for function j

Expected Output: expected output for function j

For mutators, Expected Output will be the expected values for the instance
variables that the mutator is changing. You should have enough test cases to
adequately support the argument that your code is correct. Your test cases
should cover as many different classes of input cases as possible, including
boundary cases. Your test plan should includes case(s) where your expected
output is a failure, as appropriate.

3 43E


