
Minor Assignment 5

ENGINEER 1D04

Dr. Spencer Smith

McMaster University, Fall 2013

Revised: February 18, 2014

Please use AutoMarker (automarker.mcmaster.ca) and Avenue to acquire,
test, package and submit your assignment. The procedure for submitting
assignments is summarized on Avenue, with additional details provided by
AutoMarker. Please frequently back up your work by creating a sub-
mission package in AutoMarker. This will provide a chance to recover
your work in the event of an equipment failure.

Background

The purpose of this assignment is to create a program that can process a file
containing your courses and the grades you have received and then display
the results graphically. Design, implement, and test a program that satisfies
the requirements below. Submit your program on Avenue to Learn.

Design, implement, and test a program that satisfies the requirements below.

**IMPORTANT!!!**: This assignment will be run through an automated
testing program to be graded. Function syntax in your program must be ex-
actly as specified, including spelling, capitalization, and the order of function
parameters. Failure to precisely follow the requirements below will result in
a significant loss of marks.

Requirements

1. The program does three things:

a. It asks the user for the name n of the input file in main().

b. main() calls processFile and outputGUI.

c. It displays the two results produced by processFile using outputGUI.

2. The program includes a function named processFile that satisfies the
following requirements:

a. The function takes a filename as input (not the file content) in
which each line contains the name of a course, the number of units
in the course, and the course grade in the range of 0–12. That is,
the file stores a finite sequence (c0, u0, g0), (c1, u1, g1), . . . , (cn−1, un−1, gn−1).
An example file would look something like:

1 D82



CHEM 1E03 3 9

ENGINEER 1D04 4 12

ENGINEER 1P03 3 10

HISTORY 1B03 3 8

MATH 1ZA3 3 11

PHYSICS 1D03 3 9

Each element is separated by tab characters.

b. The function given for U computes the total number of units.

U =
n−1∑
i=0

ui

c. The function given for A computes the cumulative grade average.

A =

∑n−1
i=0 uigi
U

d. The function returns values U and A as output.

3. The program has a function outputGUI that provides a graphical user
interface (GUI) for output that satisfies the following requirements:

a. The function takes the total number of units (U ) and the cumu-
lative grade average (A) as inputs.

b. The output GUI is a GraphWin window W entitled Grade

Processor Results.

c. U and A are displayed with appropriate labels on W .

Design and Implementation Instructions

1. You may use the methods provided by Zelle’s graphics module to
create your output GUI.

2. You should use your creativity in deciding how to display U and A on
the output GUI.

3. The program requires very little besides the function definitions.

4. The program does not write anything to standard output. That is, the
program does not print anything to the shell. The program also should
not invoke main().

5. The program is written in Python in a module, NOT in the Python
Shell. To create a new module in IDLE, go to File → New Window.
You must save this file with a .py extension. For more information on
submitting your program, click the ”AutoMarker Instructions” button
above.

2 D82



6. Your name, MacID, student number, and the date are given in com-
ments at the top of your Python (.py) file before your program.

7. Your answers to the design questions and the test plan (see below) are
given in comments at the bottom of your Python (.py) file after your
program.

8. Your program MUST have valid Python syntax and it must run without
errors. Ensure that your program runs properly by running it before
you submit.

9. You must sign out with a TA or IAI after you have submitted your lab
at the submission station. Failure to do so could result in a zero.

Design Question

1. Can all changes to how the file is processed be made without modifying
any part of the program except for the processFile function? Why
would this be desirable.

2. Do the parameter names matter? Do they have to be called A and U?

3. What if main() is invoked before the other two functions’ definitions?
i.e:

def main():
block of code
processFile(fName)

main()

def processFile( name):
block of code

Test Plan

Produce a test plan for each test case i in the following form:

Test: i

Input: [n]
Expected Output: [U,A]

You should have enough test cases to adequately support the argument that
your code is correct. Your test cases should cover as many different classes
of input cases as possible, including boundary cases. Your test plan should
include case(s) where your expected output is a failure.

Preparation for Major 3: Writing a Library

Write a Python library, saved as gradeCalcLib.py, that can be used to
support software that deals with grade calculation.

3 D82



1. The library should include the processFile function described above.

2. The library should have a function, plotGrades that takes the same
file input as processFile and produces a bar graph of grades.

3. The program requires very little besides the function defini-
tions. There is no main. The program does not read anything
from standard input or write anything to standard output.
That is, the program does not interact with the user who
invokes it.

Then try to modify your library and create a separate module with a main

function that gives you a sophisticated grade processor by:

1. Having the program produce additional results such as the highest and
lowest score obtained.

2. Using the GUI for handling both input and output.

4 D82


