
Minor Assignment 3

ENGINEER 1D04

Dr. William Farmer and Dr. Spencer Smith

McMaster University, Winter 2012

Revised: June 20, 2013

Please use AutoMarker (automarker.mcmaster.ca) and Avenue to acquire,
test, package and submit your assignment. The procedure for submitting
assignments is summarized on Avenue, with additional details provided by
AutoMarker. Please frequently back up your work by creating a sub-

mission package in AutoMarker. This will provide a chance to recover
your work in the event of an equipment failure.

Background

wc (for “word count”) is a well-known unix program that computes the num-
ber of lines, words, and characters in a text file. A line is a string of characters
delimited by newline characters, and a word is a string of characters delimited
by space characters or newline characters.

Overview

The purpose of this assignment is to write a Python version of the unix wc

program. Design, implement, and test a program that satisfies the require-
ments below.

Design, implement, and test a program that satisfies the requirements below.

Important: This assignment will be run through an automated test-
ing program to be graded. The program will make the assumption that any
output containing an equals sign (=) is an answer to be marked. Do not

print output containing the equals sign, except where specified in the require-
ments below. Outputs must also be printed on separate lines. Additionally,
input and output statements must be exactly in the order specified. Failure
to precisely follow the requirements below will result in a significant loss of
marks.

Requirements

1. The program asks the user to enter the name of a text file (f).

2. The program computes:

a. x = the number of lines in f .

b. y = the number of words in f .

1 636

c. z = the number of characters in f . Do not count newline char-
acters as characters.

3. The program writes x, y, and z on separate lines in a file named
wc output.txt.

4. The program is written in Python in a module, NOT in the Python
Shell. To create a new module in IDLE, go to File → New Window.
You must save this file with a .py extension. For more information on
submitting your program, click the ”AutoMarker Instructions” button
above.

5. Your name, MacID, student number, and the date are given in com-
ments at the top of your Python (.py) file before your program.

6. Your answers to the design questions and the test plan (see below) are
given in comments at the bottom of your Python (.py) file after your
program.

7. Your program MUST have valid Python syntax and it must run without
errors. Ensure that your program runs properly by running it before
you submit.

8. You must sign out with a TA or IAI after you have submitted your lab
at the submission station. Failure to do so could result in a zero.

Design and Implementation Instructions

1. You may want to use some of the functions (e.g., split) from the
Python string library (see Table 4.2 on p. 96 of the textbook).

2. You should create a sample text file to test your program.

Design Question

What is the best way to compute the number of lines, words, and characters
in a file, by reading the file once or reading it three times?

Test Plan

1. Is it necessary that most of the test cases for your program are files
having a large number of entries? Explain your answer.

2. Copy and paste the lines from your sample text file to a new document
in Microsoft Word. Perform a Word Count in Microsoft Word by going
to:

a. ETB lab: Review→ Word Count

b. JHE lab: Tools→ Word Count

2 636

Compare the number of characters (with spaces) counted by Microsoft
Word to the number of characters obtained with your program. Do
these values match? If not, explain why they are different.

Preparation for Major 02

Copy your program under a new name and modify it so that it counts the
number of occurrences of a substring s in the input file f . After asking for
the filename, your program should ask the user for the substring s. The
program will then output the number of times s occurs in f .

3 636

